Last Server Update: Never (Page auto-refreshes every 5 min)
{ "config": { "color": "#2A5ADA", "description": "Decentralized oracle network connecting smart contracts with real-world data.", "full_name": "Chainlink (LINK)", "icon": "bi-link-45deg", "metrics": [ { "format": "text", "key": "active_oracles", "name": "Active Oracles" }, { "format": "text", "key": "integrations", "name": "Network Integrations" }, { "format": "text", "key": "data_feeds", "name": "Data Feeds" }, { "format": "text", "key": "tvs", "name": "Total Value Secured" }, { "format": "currency", "key": "volume_24h", "name": "24h Volume", "scale": 1000000, "suffix": "M" }, { "format": "text", "key": "dominance", "name": "Market Dominance" }, { "format": "currency", "key": "market_cap", "name": "Market Cap", "scale": 1000000000, "suffix": "B" }, { "format": "currency", "key": "volume_24h", "name": "24h Volume", "scale": 1000000, "suffix": "M" }, { "format": "percentage", "key": "dominance", "name": "Market Dominance", "suffix": "%" } ], "name": "Chainlink" }, "crypto": { "chart_url": "", "correlations": { "Bitcoin": { "description": "LINK and Bitcoin show a strong positive correlation (0.65). They tend to move together in the crypto market.", "status": "Strong Positive", "value": 0.65 }, "S\u0026P 500": { "description": "LINK and S\u0026P 500 show a moderate positive correlation (0.30). They tend to move in the same direction.", "status": "Moderate Positive", "value": 0.3 }, "US Dollar Index": { "description": "LINK and US Dollar Index show a moderate negative correlation (-0.40). When the USD strengthens, LINK typically weakens.", "status": "Moderate Negative", "value": -0.4 } }, "dominance": null, "market_cap": null, "price": 15.33, "price_change_1h": 3.049738960300001, "price_change_1h_pct": 24.834479905929626, "price_change_24h": 1.6786957549999997, "price_change_24h_pct": 12.296962435767615, "price_change_7d": 0.7161017226999995, "price_change_7d_pct": 4.900141694651944, "rsi": 45.84, "sma50": 13.66106, "technical": {}, "volume_24h": null }, "limit_orders": { "current_price": 15.33, "discount_pct": 3.36, "discount_pct_14d": 11.99, "discount_pct_24h": 0.36, "probability": "70% based on historical data", "probability_14d": "55% based on historical data", "probability_24h": "80% based on historical data", "reasoning": "The 7 day limit order price is based on statistical analysis of 108 historical price points. In 7-day windows, LINK has historically dropped by an average of -8.4% (median: -6.9%).", "reasoning_14d": "Based on historical 14-day price movements, LINK has typically dropped by -13.3% (median: -15.2%). This price has 55% based on historical data probability of being reached within 14 days.", "reasoning_24h": "Based on historical 24-hour price movements, LINK has typically dropped by -2.0% (median: -1.9%). This price has 80% based on historical data probability of being reached within 24 hours.", "recommended_price": 14.8142, "recommended_price_14d": 13.4924, "recommended_price_24h": 15.2751 }, "name": "Chainlink", "score": { "components": [ "Above SMA50: +0 pts", "RSI 45.8 not oversold: +0 pts", "90d: Bottom 16.9% of range: +5 pts", "30d: At 49.9% of range: +0 pts", "7d: Bottom 10% of range: +10 pts", "24h: At 50.4% of range: +0 pts" ], "score": 15.388899801519942 }, "symbol": "link", "thresholds": { "ada": { "24h": { "avg": 0.6723665820997952, "current": 0.6789801717, "current_position_pct": 59.76363628695174, "high": 0.7335584164, "low": 0.5979143381 }, "30d": { "avg": 0.6630130729500001, "current": 0.6789801717, "current_position_pct": 61.96939140204012, "high": 0.7218269706, "low": 0.6091629863 }, "7d": { "avg": 0.68354343176, "current": 0.6789801717, "current_position_pct": 42.059778713117964, "high": 0.7010269761, "low": 0.6629760265 }, "90d": { "avg": 0.7461582582287039, "current": 0.6789801717, "current_position_pct": 21.184222205988025, "high": 1.1295030117, "low": 0.5578879714 } }, "aud_usd": { "24h": { "avg": 0.6402527485267225, "current": 0.6446205973625183, "current_position_pct": 80.86218687469923, "high": 0.6468724012374878, "low": 0.6351061463356018 }, "30d": { "avg": 0.6399904787540436, "current": 0.6446205973625183, "current_position_pct": 100.0, "high": 0.6446205973625183, "low": 0.6365291476249695 }, "7d": { "avg": 0.6411816954612732, "current": 0.6446205973625183, "current_position_pct": 100.0, "high": 0.6446205973625183, "low": 0.63840651512146 }, "90d": { "avg": 0.6399904787540436, "current": 0.6446205973625183, "current_position_pct": 100.0, "high": 0.6446205973625183, "low": 0.6365291476249695 } }, "bnb": { "24h": { "avg": 598.1818820140405, "current": 602.1024780273, "current_position_pct": 59.397393417212875, "high": 618.9306030273, "low": 577.4846801758 }, "30d": { "avg": 595.2158551897321, "current": 599.0616455078, "current_position_pct": 52.281910049806754, "high": 618.826965332, "low": 577.4059448242 }, "7d": { "avg": 596.6484008789, "current": 599.0616455078, "current_position_pct": 86.13935484912184, "high": 601.1641845703, "low": 585.9950561523 }, "90d": { "avg": 616.0660072609222, "current": 599.0616455078, "current_position_pct": 40.3457012116599, "high": 698.0373535156, "low": 532.121887207 } }, "btc": { "24h": { "avg": 91676.56147959184, "current": 95049.6015625, "current_position_pct": 81.28488652953595, "high": 97788.7265625, "low": 83152.828125 }, "30d": { "avg": 90436.318, "current": 99265.44, "current_position_pct": 100.0, "high": 99265.44, "low": 79607.3 }, "7d": { "avg": 96412.11714285715, "current": 99265.44, "current_position_pct": 100.0, "high": 99265.44, "low": 94277.62 }, "90d": { "avg": 91044.4401590909, "current": 99265.44, "current_position_pct": 76.92844272493112, "high": 106146.265625, "low": 76322.42 } }, "doge": { "24h": { "avg": 0.17073033536495902, "current": 0.1721897125, "current_position_pct": 54.10411883217504, "high": 0.1900947094, "low": 0.1510825008 }, "30d": { "avg": 0.16835888208571428, "current": 0.1692402661, "current_position_pct": 54.278432757517834, "high": 0.182457, "low": 0.153549999 }, "7d": { "avg": 0.17354613542, "current": 0.1692402661, "current_position_pct": 0.0, "high": 0.181576997, "low": 0.1692402661 }, "90d": { "avg": 0.2138659054490741, "current": 0.1692402661, "current_position_pct": 11.824321756862755, "high": 0.3715769947, "low": 0.142106995 } }, "eth": { "24h": { "avg": 1735.284697729695, "current": 1787.4671630859, "current_position_pct": 76.40954507064357, "high": 1861.6646728516, "low": 1547.1412353516 }, "30d": { "avg": 1706.9741254534072, "current": 1795.6882324219, "current_position_pct": 85.31503563301818, "high": 1842.7078857422, "low": 1522.5187988281 }, "7d": { "avg": 1820.1055175781198, "current": 1795.6882324219, "current_position_pct": 0.0, "high": 1842.7078857422, "low": 1795.6882324219 }, "90d": { "avg": 2230.788723415799, "current": 1795.6882324219, "current_position_pct": 17.352695603223285, "high": 3334.7141113281, "low": 1472.5531005859 } }, "hbar": { "24h": { "avg": 0.1781344280101031, "current": 0.1755142659, "current_position_pct": 44.37795828327392, "high": 0.201337412, "low": 0.1549113095 }, "30d": { "avg": 0.17549739937499997, "current": 0.1704801619, "current_position_pct": 38.1619643186057, "high": 0.1923899949, "low": 0.1569589972 }, "7d": { "avg": 0.17751043142, "current": 0.1704801619, "current_position_pct": 0.0, "high": 0.1869210005, "low": 0.1704801619 }, "90d": { "avg": 0.21239652043240737, "current": 0.1704801619, "current_position_pct": 15.299764612752947, "high": 0.341091007, "low": 0.1396619976 } }, "link": { "24h": { "avg": 13.963623642186652, "current": 13.6501293182, "current_position_pct": 50.39697605651627, "high": 15.2885704041, "low": 11.9854631424 }, "30d": { "avg": 13.643861566271427, "current": 13.5566511154, "current_position_pct": 49.89762122733281, "high": 15.0440607071, "low": 12.0753202438 }, "7d": { "avg": 13.997977638239998, "current": 13.5566511154, "current_position_pct": 0.0, "high": 14.6611967087, "low": 13.5566511154 }, "90d": { "avg": 16.337649106978702, "current": 13.5566511154, "current_position_pct": 16.88223910220904, "high": 26.5944633484, "low": 10.9085111618 } }, "sol": { "24h": { "avg": 144.17476585276415, "current": 143.0574798584, "current_position_pct": 60.214023862711755, "high": 155.3600921631, "low": 124.4381103516 }, "30d": { "avg": 139.50774083818573, "current": 143.0574798584, "current_position_pct": 76.59184139390437, "high": 152.3036346436, "low": 112.8039245605 }, "7d": { "avg": 145.71665344236, "current": 143.0574798584, "current_position_pct": 0.0, "high": 148.0500335693, "low": 143.0574798584 }, "90d": { "avg": 159.7399799205676, "current": 143.0574798584, "current_position_pct": 24.74558908610861, "high": 257.2373657227, "low": 105.5121917725 } }, "xlm": { "24h": { "avg": 0.26414244689423866, "current": 0.2620785534, "current_position_pct": 47.31407244821387, "high": 0.2960934341, "low": 0.2315318286 }, "30d": { "avg": 0.2580699569428571, "current": 0.2584271133, "current_position_pct": 46.44929760139922, "high": 0.290948987, "low": 0.2302179933 }, "7d": { "avg": 0.26541236042, "current": 0.2584271133, "current_position_pct": 0.0, "high": 0.2748889923, "low": 0.2584271133 }, "90d": { "avg": 0.3017017020398148, "current": 0.2584271133, "current_position_pct": 16.594430085463056, "high": 0.4465050101, "low": 0.2210070044 } }, "xrp": { "24h": { "avg": 2.166860205227254, "current": 2.1498272419, "current_position_pct": 36.81774204863015, "high": 2.3341789246, "low": 2.0424013138 }, "30d": { "avg": 2.1455933333333332, "current": 2.2088, "current_position_pct": 73.83773928896991, "high": 2.2949, "low": 1.9658 }, "7d": { "avg": 2.1676285714285712, "current": 2.2088, "current_position_pct": 99.39613526570082, "high": 2.2093, "low": 2.1265 }, "90d": { "avg": 2.3947637466290908, "current": 2.2088, "current_position_pct": 30.004257156754356, "high": 3.171104908, "low": 1.7963 } } }, "tip_addresses": { "ADA": "addr1qyq7zqu46tsr2xfe93wm0que7mlg7v4vz5t709wjd80e5qqpuypet5hqx5vnjtzak7penah73ue2c9ghu72ay6wlngqqhv7aa9", "BNB": "bnb:0x2c2961B755864D89C50B6D71558B6A72958cc4Ca", "BTC": "bitcoin:bc1qq6qhex4q0qt43j7nkx70q70augmw4p6k6aqku8", "DOGE": "dogecoin:DQ6yTJrge1Yhr5EXwwTxp57u64SgGVd3DL", "ETH": "ethereum:0x2c2961B755864D89C50B6D71558B6A72958cc4Ca", "HBAR": "hedera:0.0.9141731", "LINK": "ethereum:0x2c2961B755864D89C50B6D71558B6A72958cc4Ca", "SOL": "solana:FFDs2634pRxGRt4U2Z4bsVC6dKra3V3vDJCrzbAe28jg ", "XLM": "stellar:GCJM2QBJD2FZNQLG3ZOP5MIJZQ2G4WT3VAMLEMSXRCSRWKI5NRWXGLMZ", "XRP": "ripple:rMdBEUzcQBz3Cpm34KyVV6A5hNUm4o2Gyi" }, "tip_qr_codes": { "ADA": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHqAQAAAADjFjCXAAAEKUlEQVR4nO2dQY7jOAxFP0cGspSBOkCO4tygj1ToI/UNrKPUARqQlgXI4CxEWXJ6Z3uQ9uRzYVRiPygGCEr8pFSiOGDhnyM0QJw4ceLEiRMnTvxcXMwGAGmAyLiIyLgIwrgIggyQBxYBUn30cd7oxN8Nh6qqYlJV1ehUZwCqEQC8Kqbo1J6Lzh5pxHzpdyf+ajxZ+JLP6FTknst3CPcMTJohD5/LoxYTzxyd+JvjYQQAuBLNMEUAQQYgjEudV/+70Ym/BT48fzH9GgVIAkUaAaQRVdJboEinjk78PfHqdV6B4lJeIQAg8AoJd/uo4Ue0Fd55oxN/azyIiMgIAGlAySGmrwF2iU7l88sSWREROXV04m+Gl1jXhy//LQp8iwIZCPdvAXy7bCtol3534q/Cq3ISAQAmi+jsM3T2dkNnAFVI2T536Xcn/ircvM6S1mweNsUm2uUq1an9hUkzqNcRP2BV8zUxroW54mHAqhKv3gmvjHXEj1ibUktcm9fvVHNxwjKvTtF1zzHWET9gLYbpDNeVwPqQ1uJfqZytznrpdyf+Kvx5Xdcu5lcAzB21Rr2SV9DriO81U07Cj4hShwjj73JHAJft4n+LAk4R7nmjtVz63Ym/Cq+xzrfGE6CfXDdBsK71mE0QP2Tduq5PWp1a0hDrDGuO2YQUeh3xvdblC7rqdc3D7IauTlgTDq7riO+2Wv1PNxXAaan0W8/Jh2L6uinCA1B7BNBwz1zXET9iVQxxfTSD3+Sw3ZTqlSox8bNm2Lqu63XgiOqE61pvap5IryO+2zq9rtUcVv+zdd0aCQGAdVjiZ2UTbTZFrYOp7dYxNaVrEGAOS/wUfJESzcLoVD6/bpYuWH9dBqa4lF5O+dQMeZw6OvG3wtdsAmsiUYWUtSz7h5rCWEf8mHU5bJlSiw6Mrhhh02xthmIdlvg5eCgbYAfoT7lZHQLppiKjU8B/S/nLWgAWsfj3V/x44lfDO+WkqXTlzlSLFtXX1oBHvY74MStu1resW/WrS2Tbx+JwrMMSP2bPwW27kLMOzrpboj8AhV5HfLfVWFcP1ulahpteV+fVGvU4wxI/ZOZcbb0We5W4bk90tinxudP40u9O/FV4d5JY+Whi3GYNN8OC4BNGryO+z3RrffMcgFabrbFOtV3odcR3Wemvq8eWuKylBJY+MuAjxNpNlkHLlon0UbRi9tcRP2BthrVUNQLdwRIzgM26Tjfdd5d+d+KvwvtzTtb2dMshdE0u1n0TAOp5FPQ64nvtj1MTywyLIaOcmujzgCl+lClVgWVQJECm+YTRiRMvlgbbt/NzdKpzuql5YhogjzRA5L7mGn/bjyd+Kdxrv88/jIu0E3es3c7Or1OUZrwzRyf+XnhfEXvaCrttHm4acq1XcF1HfKcJ/3sdceLEiRMnTpz4/wL/F9HKacHAhMKqAAAAAElFTkSuQmCC", "BNB": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAFyAQAAAADAX2ykAAACmUlEQVR4nO2bQW7bMBBF31QCsqQBHyBHYW6QIwU9Um4gHcUHCCAtDVD4XZCUZbuNG8AxpHZmIUPSW3yA4OjPcGziK9H/+BIOzjvvvPPOO+/8n3gr0UJvZvQ7sJfRDMb67uWBepy/F48kiShJGhpJSuRLRyNiflaRbm36nf882vI77iC+gwEYYZBFTSZGMGjSg/Q4f1++vX7UJGBq1e8+Hq/H+e/mQ8JeAHs7PF0Xx+vX7/wy6v4NAkYgb11rBJSkvFzltel3/kZk81SiGKqzS33n/mqLfF7fU0BIQJCARpfh67tJ3l7GUv9KAxAPZurCca5/23P+u/U4fy9+kZ8Xpa+UakIGpKHx+neb/CI/515GRyN1obQ7iEoQh8r5+m6Mz4nX4vs+qX8+mmCyk6sS415GSK3F7hF6nL8vP9dHRwPa3L/K0b8mLL6DepuLpLXpd/5GXLjmkoZDWjSmS5L2/LxB/sxf1ao3u6r8JeashPL13Rg/718VV9UBMO/fXAkH37//Aj+a5QWNhyfl2ziAunHuRK9av/NXsTg/MsJHa9AmCEcTQVg+OBx21XetTb/zN2JpowaoJqvarS7Mp/+enzfI1/UdmrNv7TC3s+pMh39/N8nP+XkyGOfqN6TWoJFRRjq8/t0m/5vzo2qio9e/2+dLf7LcNUn9ax246q1JMO4TjHv3z9vkL+cnq8lKlPP92t1yf7VpfpwnnIMkHZ6kn7vJ8jh0PLSUt2vV7/xf8v1uMvrno9mbErk+IiRKY2v1+p0/i6v52NhNWBwm8lc3DkB/OlVam37nP4/L+cl8FthbLo2w2E0tsZsqtzb9zt+I0/kRi/lJzU2ssz+puL/aGp/35WnCWZDm20anZw/S47zzzjvvvPP/A/8L6xATRaxbyL4AAAAASUVORK5CYII=", "BTC": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAGaAQAAAAAefbjOAAADC0lEQVR4nO2cTY6bQBBGXwUkL9tSDuCjwA1ypjnS3ACOMgeIRC8tNfqy6B8zk1XixMyY6gUy4CdXi1ZVfdWFTfzxmL/9OQMOOeSQQw455NBzQlZGD8Tyyey8lstjrF8YdzHPocdDgyRpuV1fDegkLZ000UmS9B56nHkOPR6KxQHYGBIQJE2xh/mSyDeyB9nJPIceBvUfL8zWyYbXPtkgsOGtTyLuZZ5D+0ODEsyXq2mKPXq5XGv28K9/yaFPCVUfEQTFFaw9w7RiwyvY8HYSRNhWsj75nBz6B9BsZmZngHhSOdRhI0V17GWeQ4/2EZvHP587IFxNkNB8uVrxIHuY59DDIbKqHBaAm8gMCU2h3KiytNzV9Mnn5NA9ELXO0ElSIi8GLZ0YlNAE5SClUrfwFfHMUFOfa04SRDzJhulqIn6XEZZ836DzCtVhoOoUJAhXg3iSjSGhKfbYGCTaovkic3LovqhRY8V2LKWKDa2O6XnE00PUp09JJaGTJqC4DCDva0wUN+Ir4qmhjdaoWWSn6g9ugqOrbsRXxLNDW/U5NK3RhGf5Sosf7iOeHmp5hLZFqPzgAYalkybPI44DNR/RtbpU4na6STkn8HrEAaC6InI1qrbI5CJlkDS1gxY8jzgAVPc14hkIPy3HjnnskhH7ZNAnAwPo0sPNc2gnyOySgNgDIWEjq2W/UTxDqnnnLuY5tFPU2NaqmsLI68C1xuGg2OdOyvzgc3dlSDCfy54XsFpOL7/KnBy6CyriIjfGDG993tIoI/Z5bdi4l3kOPQpqUaOoiVKXCjVnyDoUagO/R41nh9D7UQpRNYVQ64qoZU1fEU8OtY4ZoLXNlBaZllmWgpX7iANBLWqY2akWtUOCOZ8mbi/5fJU5OXT/Tld1BTV08D6P8L3PQ0LDm5m0rJZ7qF7Oq5Wdrthj497mOfS/od/e8iOo9FTO1smgS/k1nvnsVewjQB/f6dJsoPnHgg05XKym+ZKwDfTJ5+TQPdBHrZEThywyw1Zzeg/VQSDzfyZzyCGHHHLIIYf+EvoFE8iU4nXi45UAAAAASUVORK5CYII=", "DOGE": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAGaAQAAAAAefbjOAAAC60lEQVR4nO2cQY7jIBBF/x9byhKkOUCOYt9s1EeaG5ij5AZm2RJWzaIAk/SquzN2xy4WkW38FFBKVNUvCAWfbuHX5xnAIIMMMsgggww6JsTcepB+IYIHysdCIJYXxl2GZ9CGEEREBIOIiMydXgHoRGQG1o7mvemHz8mgZ0CxLgCRBLCQo0uQNw9wBECy3294Bm0G9Q/3EnyXOPz1AKIHhxuf9E0GvQb0aBEcZk/ApR7hKhpMCOJewzNoc+gxjpDJJYhIAoa59loccTookCQ9wD+3i3CMFw0vOcYeABZNNfYankFbe41VylYPETxYOt4p7QvbDs+gzaHqNVJ90hXngOJEJieCYQbMaxwfai1CpQg1gfqhryRoh5hFHB2qsWO5H6QYgzbtsMjyfFDrK/QWsQeCL+olIinTXsMzaGvIvVOmSJJ+IUcsRLgm7eAIgLyKcNxpeAZtBjWKA+CK9jDVugZcjS3Ky+Y1Dg2VHxlASS7kXqbqGoXKLOL4UAkga66hv36tgmZjqLZhFnF0KNc1wtgJArtUJKmFCH4uJY3oAbh30yxPAOU4ouYazf6ICet2CcAUqpNATe1TArukK0MYF10oJBAQxN8JgGRp+6fPyaDvQFWI6mpK0VXFukQPuZXw0taII0ONip3lJ5cVa62Gq2DlUtlfZxZxdKi1iJqHYl0P9JlL7TOziCNDrUI1zHfrwaRXtQQGWGR5IsglIFxrfomlXMUeMkWyKYa9ypwM+gpUss8SVGYPocJlka4ANJvsbI04NFQ1y9xKRJHNYnUisDjiTNB6pgvBd1rilAkLc2xRNlvuNDyDtoc0tZwBDLe6DSJeRN5I5owU+SzPq8zJoG9B9UxXXSM4FjtAuDOLl5mTQU+BVJeKF8Fw63M1QwNN3bG/8/AM+t/Qx1N+1wSEEZTgQYETELFPHMTiiDNAH850tSfCcV/XgClUJ4BqNRyA7rd1+fbhvJ/VNU4C0f6ZzCCDDDLIIIMM+iL0D7Msr08aYiwEAAAAAElFTkSuQmCC", "ETH": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAGaAQAAAAAefbjOAAAC3klEQVR4nO2cTY7iMBCFX02QWBqJA3CU5GZobuYcpW9gL5EcvVmUK3G6V90wQCflRRSIPxErpfp5riDEt8f45/sM4JBDDjnkkEMObROSOg7AKCL1Wj7oQYZsE4aX3J5DT4RAkkRPkkydnumFGAoY0emFZl588zU59Agozw4AkzCGAhnyAXLlTS+oB3nV7Tn0NOjw5Zt8JvqEuSrtKJ+nvPmaHHokxL+XAgCTaB4xnv7XLzn03lAgGfV0EhnQUQYAck11Asnyuttz6GlQjRqjRoYO0n8cKchne/x6Nq0ix5uvyaF7ILWIRsoeLwUECqhneRIgrLXuN1+TQ/dAX6pPBKs+24+dxhStQb363DJkDznMZqGjVIvoU5tCuEVsH7KHjE5dgX1XgH72EX1qZSq3iE1DTdQAQgFjIMlUzYJMgDqKiM41yx1AaMJERM0erA610bMACAVuEduHmqhh3sICRt3hsFih3sItYutQjRqAZZE1alhxEcOcVCbPLPcAzVGjuoe2rkh2iFZ9uo/YPrTKLIGaRda6osaPOiW5j9gDNEcNixCaR7BYwFiiBj2z3A9EkpQhH02UyAf1Fnbo6P0RO4EazbKmEIFs2qdUzEyA5xE7gSxqhEW2tsKzX7a/MQtWbhFbhyyzTMv2Rbu/VQ3E9Gy3iP1A2lh5tCIzTWJK5U1bIxiXJolfsiaHfgJZtphPwHi5CXtOwlE6AvlciHy2PsvsmeUeoFX1CdMsI4Amt6jD9z73ADWa5aJnr17QqCpEM9ktYvvQ8k4XyZvU7CGL1F5sDRizt/gVa3LoLqifdzdhvTMyBOuPqMKlZ5Z7guZ3usbTZMVFPhLjqWN9FzTQfcQ+IXtVYwgFcv04NHnEg3/JoTeEGoWqaadct122O6OeWW4dMo0hEEAGVKvqOQn6OAmArmA8JQAhPf/2HHo61OgRUNma6/bbBCw7XV59bh8S/2cyhxxyyCGHHHLoh9A/Cv+5pB/T2bkAAAAASUVORK5CYII=", "HBAR": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAFKAQAAAABTUiuoAAAB/0lEQVR4nO2ZXaqjQBCFv5puyKPCXUCW0u5gtmwvJQsY0McLypkHbU0y3CHOxShM9YMk7fdwoDhl/Zh48eQfr5LgqKOOOuqoo3uiNp+INQC5Bmv6ct3sLsDRLWiSJHVANjPoI0CQJOkR3UeAo1vQvlgoreEBzCy+R4CjL5z49F+5/hWVug9E/w4Bjn4jWpZuEYPwLgGO/kO0KgE9KF+Huwje986Ha3WU+zqCIFK3Psp1kqT2cK2OTj5aLaRcB0Q/2uy3vQU4ut1bSUO5qCS1gNpKs8HcWydBp2itIZM6pgdUEkvT5dE6D5rNTG1/ech9fURtNWDN/gIc3YJWktl1AAiyhiBgNGt6747Pgy7fLUnqQvlkrY+qvPVMeDxanNPXQPVpQBgsaYwkjdGolorxcK2Oln6rVBSkLqhUGXPR4d46GZpuEZI+TS1gVocpMZrVwWfwp0Ef+62wNFil/UpdKfLdW8ejyyyjWChfhzj9TC3Y7gIc3Yyuu2PS7SIzu2haSearZM2ZtP7P6HMFP90tdfs0iPJMeDJ03R13AIw27/yB6cV5tDq6nFyHOfVNBcbN7Ct0HwGOvo5K3WjrGMOaavgK3UeAo385z7tjAIwKyD875iHHjgIc3R6tPKW7gKV23vRbuhkClTL+cK2O/rE7Lp2X1mufEzrqqKOOOnoW9DcB4SaOiBkSKwAAAABJRU5ErkJggg==", "LINK": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAGaAQAAAAAefbjOAAAC3klEQVR4nO2cTY7iMBCFX02QWBqJA3CU5GZobuYcpW9gL5EcvVmUK3G6V90wQCflRRSIPxErpfp5riDEt8f45/sM4JBDDjnkkEMObROSOg7AKCL1Wj7oQYZsE4aX3J5DT4RAkkRPkkydnumFGAoY0emFZl588zU59Agozw4AkzCGAhnyAXLlTS+oB3nV7Tn0NOjw5Zt8JvqEuSrtKJ+nvPmaHHokxL+XAgCTaB4xnv7XLzn03lAgGfV0EhnQUQYAck11Asnyuttz6GlQjRqjRoYO0n8cKchne/x6Nq0ix5uvyaF7ILWIRsoeLwUECqhneRIgrLXuN1+TQ/dAX6pPBKs+24+dxhStQb363DJkDznMZqGjVIvoU5tCuEVsH7KHjE5dgX1XgH72EX1qZSq3iE1DTdQAQgFjIMlUzYJMgDqKiM41yx1AaMJERM0erA610bMACAVuEduHmqhh3sICRt3hsFih3sItYutQjRqAZZE1alhxEcOcVCbPLPcAzVGjuoe2rkh2iFZ9uo/YPrTKLIGaRda6osaPOiW5j9gDNEcNixCaR7BYwFiiBj2z3A9EkpQhH02UyAf1Fnbo6P0RO4EazbKmEIFs2qdUzEyA5xE7gSxqhEW2tsKzX7a/MQtWbhFbhyyzTMv2Rbu/VQ3E9Gy3iP1A2lh5tCIzTWJK5U1bIxiXJolfsiaHfgJZtphPwHi5CXtOwlE6AvlciHy2PsvsmeUeoFX1CdMsI4Amt6jD9z73ADWa5aJnr17QqCpEM9ktYvvQ8k4XyZvU7CGL1F5sDRizt/gVa3LoLqifdzdhvTMyBOuPqMKlZ5Z7guZ3usbTZMVFPhLjqWN9FzTQfcQ+IXtVYwgFcv04NHnEg3/JoTeEGoWqaadct122O6OeWW4dMo0hEEAGVKvqOQn6OAmArmA8JQAhPf/2HHo61OgRUNma6/bbBCw7XV59bh8S/2cyhxxyyCGHHHLoh9A/Cv+5pB/T2bkAAAAASUVORK5CYII=", "SOL": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAGaAQAAAAAefbjOAAAC9ElEQVR4nO2bTW7bMBBG31QCvKQAHyBHoW7QI+VMvQF1lBwggLgsQGO6IKkfF10Ebi1XHAEJHIsPoaAPw2+GQ1G+fE3fvs6AQQYZZJBBBhl0TkjK1cM03ESk/mISERljHTAeMj2Dng95VVWdAT93qiH2aKBTvKoCnarmT4dMz6DnQ7EEABkBcKoyxh6R4SYagBxBjpqeQcdB0wDy/iGC14SGeFEZ/8l/Muglof7+C/+jTwqpV+I1gfsUJR41PYOeDpH9QfERXfEMwaXqLVQ1e4t1XHjxZzLoL0CTiIgMgJ9B3j8uCrFHxtgD3HKqcdT0DHr2qrErZd8EuOW1QqcBAbevdb/4Mxn0CFRXjRkoC4ZuVo1sL3W5q7ZqnB0qisCl+gmKBLymMia7h8VbmCLODC0xoqti0FTEkGtVruhlFY0pogFIA1UMk/RAvKgG91MgiuA/eorRPGR6Bj09RuRQkIMCRRuqc5cz0nLXss8moI2PAFc85uojNCxrhc6dKaIBqL7uutNVJDCvW1udFqmo+YgWoPqSc2qZyoJRtj2Ln8xxI4DlGg1Ai49Iu+1vV8OD3/kIixHnh5Z9jRIeSlDYyILFUZgiWoC2damwNsa4IgHWOqbOmI9oANpUqKqFWL1FvXz1FqaI80Obt7/NL4GtcbBcox1oqUf8oShRhqSlRmGKODm0XTVCrT1sNjvXrdBlsCni1FDtqnM/Bdyn4AMILvVKHETh1uNzA8217oW++DMZ9Ah03x+xu1FrFPmyvc8moF0VW1cLsR7VoPbO2L5GE9CmHkE2DkDtnCoZ6a57whTRBpQzzRnkvXZOyehSPr5RkhC6enLj/3gmgx72ETkUuG1r3SaCWD2iUcjPy7G+t1TP9rmE9VA1Av12pos4gJ+viWm8KHATfECZ3ha78eLPZNAj0FKPUCCCErvENHaIn68wfZ9ViANAb/WIBqD7XKO2yNQqxMZgYLlGC9D9mS4tP2n5Ttn9+dzpGWSQQQYZZJBBLwz9AhjP81yHblVtAAAAAElFTkSuQmCC", "XLM": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAGaAQAAAAAefbjOAAAC+0lEQVR4nO2czW3jMBCF3ywJ5CgBKcClUJ0FW9J2IJaSDqijAQpvD0NScpJL1gvRsYaADcniBwzhMeeXFuLbI/76PgMYZJBBBhlkkEHPCUkZHiIjACwiiCJSZi11wtRFPIOOhwJJMgGcsYpMAynTQCKKh0xwJEneQseJZ9Dx0NI2AACI4ypkWgUYMjgDEBHfTzyDDoP8h3sJ7x7E4oE4OUpIq0f400s8gw6HPmoEMGQPwGWENAqiAMTSSzyDukEDyRkAorwQ8ZIhcikGAwBAMvcTz6DDIOw9RjgipK/e6oRAkvODr8mgeyC1GrtUdhwhjCOkPFgA3kw4VDyDDofKHhHIshVoHEqyhBlDsxVDmWd7xFNDYBuqFs2jIJlBJrf7zDTi+aGqEQkoepCAqhsZnHVnKFc6TCOeGWoa4VQFEFJVi/a0PGC2PeIEUPvOy0YBwFWrkZw6lNVgZNge8fxQiz6Lu4CQag2jqYBZjTNB9WcPx+pCbP5kbn5nvpn84Gsy6L9Aq8g0ZCCKB+Ilg3z3WiZHHEuaSqZe4hl0NDRkAMuLWg15S6vqAZmAcnuxLPYZoH2sEdQ4uBaMuupCoNya1Xh+SLPYoq9lBMIMaAE0pFcAyysFQ4KELZP94Gsy6H5IN4DfF5IzVgEWD3UrMFxFm+wA8yPOAH3KR2giql6RNRjdEt1mNZ4a2lXD94WMmqa6CUYtH3EeSEMK7aQcrkLyKpqw0gaare2yi3gGdYICScQRkGnxkLd3j6oHjsW36CieQYdA+1qWfvFbkKmFL1djjMH8iPNA1YEsTqVmKjdl0OI4Viltlz9iTQbdA21nuupw6j3U6NPrZzJ1Ec+g461GqInLXTA66wRXe+5aDGpW4wxQPdNVzn0CxYUIzKgnQC3WOCPEGauUYPRyla27sgQhncUzqAO0vLA6DsDuKqSatfp5azLo+1BzHAKvWvnW87+lZ6L9b0An8Qw6DPryTNfWcVkSELi9ffA1GXQPJPbPZAYZZJBBBhlk0D9CfwEpy38HsSIsqQAAAABJRU5ErkJggg==", "XRP": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAFyAQAAAADAX2ykAAACcklEQVR4nO2bQY7bMAxFH2sDWcrAHCBHkW9W9GbWUXKAAtYygILfhWTH03bQGTTjxgW1SOz4LT5AfJoUFRMfWenLh3Bw3nnnnXfeeeff4q2tHhsBG7PZ5sqs3T6rfuffWn39ihNAfkFw6yEIkoHIXQHA9tHj/OfweXUonTRlM6CTjYCZ9Xvrcf5zeBuzGelcIOpqmv6xHuf/ju9//iENXTECAN2vzfGz6Xf+fXyQmlfD1YiXk2zkVnO2pLK3HucfyiczMxuAeDktrs0nAbdaPu+rx/kH8TU/b/JwGjAIV1M6F/Tq2Q56nH8sjySJKIk4Q/0glJqVl5zdEE3Ppt/59/Fr1ZwGgNxjZidBKO3pvnqcfwzf/Eso1bp31zZjz53uFnf/Ho2vYZRm0BS2SboFee6kKRQ8vofkt/HVDM3Jq6cJUu2e5PE9IL/EVwWiynrb4lvrqyj370H5df+qk5FfBNz6NmSgkxG+L1e76HH+sfy2P2pd0VJVTYCmUJYXs/v3gPzi3zwg8kmkEQRXU9TdxLvpcf5z+CCRzgX7qgLkk2ykk329mBEvPh88KL/uT956kftCsk4Wp6tBfilKAyidfb5wUH7TH7X6ee5075Tu1bX3R4fk1/2rJcjr1Lc9gNYaeXyPyG8a3iWgi3/jq8La6+cD8/fzk3WlAdohrNy/mgk/p37n/8DHzSZ0wcZQqOMk7ld76nH+Qfy6oQHEudMy/9V2rL9mas/PR+c1Ledja9U8BUnf/Hzs/8VXE+eT6tZGnG8+3z82H9TOT6bhZqQBzNbjHP7+PSy/bXNr6xt+PyT0/veQvPn/u5133nnnnXd+d/4HAEPcRN9TrS4AAAAASUVORK5CYII=" } }
Click QR code to copy
Limit order prices are calculated based on statistical analysis of historical price movements to balance optimal entry price with probability of execution. Choose timeframes that match your trading strategy.
Current Price: | $15.33000 |
---|---|
Target Price: | $15.27510 |
Discount: | 0.36% below current |
Probability: | 80% based on historical data |
Current Price: | $15.33000 |
---|---|
Target Price: | $14.81420 |
Discount: | 3.36% below current |
Probability: | 70% based on historical data |
Current Price: | $15.33000 |
---|---|
Target Price: | $13.49240 |
Discount: | 11.99% below current |
Probability: | 55% based on historical data |
A limit order is an instruction to buy or sell an asset at a specified price or better. Unlike market orders which execute immediately at the current market price, limit orders allow you to:
Note: Limit orders are only executed if the market reaches your specified price. They may remain unfilled if the price doesn't reach your target.
Strategy | Pros | Cons |
---|---|---|
Limit Orders |
|
|
Dollar-Cost Averaging |
|
|
Binance offers some of the lowest fees for limit orders at 0.1% (can be reduced further with BNB).
Select the LINK/USD or LINK/USDT trading pair from the market selector.
Make sure the "Limit" order tab is selected (usually the default).
Type in the price at which you want to buy Chainlink. Our calculations can help inform your decision based on your timeframe:
You can specify the amount in LINK or use the percentage buttons to allocate a portion of your available funds.
Your limit order will be placed and remain active until it's either filled or canceled.
Coinbase offers a user-friendly interface with limit order fees starting at 0.4% (maker fee).
Select the LINK-USD trading pair from the available markets.
Select the "Limit" tab from the order type options.
Input the price at which you want to buy Chainlink. Our calculations can help inform your decision based on your timeframe:
You can enter the amount in LINK or USD using the "Size" field and the toggle between crypto and fiat.
The default is "Good 'til canceled" (GTC), which keeps your order active until it's filled or you cancel it.
Kraken is known for its security and offers maker fees starting at 0.16% for limit orders.
Select LINK/USD from the markets menu.
Make sure the "Buy" tab is selected.
Type in your desired purchase price for Chainlink. Our calculations can help inform your decision based on your timeframe:
You can specify the amount in LINK or use the percentage buttons to use a portion of your available USD.
Your limit order will be placed on the order book until it's filled or canceled.
Bybit offers competitive maker fees starting at 0.1% with volume-based discounts available.
Search for and select the LINKUSDT or LINKUSD trading pair.
The order form is usually located on the right side of the trading interface.
Input the price at which you want to buy Chainlink. Our calculations can help inform your decision based on your timeframe:
You can enter the amount directly or use the percentage slider to allocate a portion of your available funds.
Your limit order will be placed and will remain on the order book until it's executed or canceled.
While both limit orders and dollar-cost averaging have their advantages, many experienced Chainlink investors use a combined approach to maximize their buying strategy:
Invest a fixed percentage of your monthly budget (e.g., 50-70%) using regular DCA purchases regardless of market conditions. This ensures you're consistently accumulating Chainlink over time.
Allocate the remaining portion of your budget (e.g., 30-50%) to strategic limit orders placed at key support levels or at significant discounts to current prices. Our limit order calculations provide excellent starting points.
Instead of placing one large limit order, consider creating multiple smaller orders at different price levels and timeframes. For example:
If your limit orders don't fill within a certain timeframe (e.g., 7 days), consider adjusting them to the current market conditions or converting a portion back to your DCA strategy to ensure continued accumulation.
Low: $10.91
High: $26.59
Position: 16.9%
Low: $12.08
High: $15.04
Position: 49.9%
Low: $13.56
High: $14.66
Position: 0.0%
Low: $11.99
High: $15.29
Position: 50.4%
MACD | Neutral |
---|---|
Bollinger Bands | Neutral |
Stochastic RSI | Neutral |
ADX | Neutral |
OBV | Bullish |
Technical indicators are showing a mixed picture with no clear directional bias.
Understanding how Chainlink moves in relation to other assets:
Bitcoin | 0.65 |
S&P 500 | 0.3 |
US Dollar Index | -0.4 |